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Figure 1: We propose a novel video style transfer framework, which can produce temporally consistent results and is
highly robust to intense object movements and illumination changes. Furthermore, benefiting from the nice properties of
our framework and model, we can enable features that traditional optical-flow-based methods cannot provide, such as
dynamically changing styles over time. Embedded animation best viewed in Acrobat Reader.

Abstract

Recently, neural style transfer has drawn many attentions and
significant progresses have been made, especially for image
style transfer. However, flexible and consistent style transfer
for videos remains a challenging problem. Existing training
strategies, either using a significant amount of video data with
optical flows or introducing single-frame regularizers, have
limited performance on real videos. In this paper, we pro-
pose a novel interpretation of temporal consistency, based on
which we analyze the drawbacks of existing training strate-
gies; and then derive a new compound regularization. Exper-
imental results show that the proposed regularization can bet-
ter balance the spatial and temporal performance, which sup-
ports our modeling. Combining with the new cost formula,
we design a zero-shot video style transfer framework. More-
over, for better feature migration, we introduce a new mod-
ule to dynamically adjust inter-channel distributions. Quan-
titative and qualitative results demonstrate the superiority of
our method over other state-of-the-art style transfer methods.
Our project is publicly available at: https://daooshee.github.
io/CompoundVST/.
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Introduction
Creating artistic imagery used to take experts hours of effort.
Benefiting from the technique of style transfer, real scene
images can be automatically stylized to be more visually
attractive. Gatys et al. (2016) first proposed to use Con-
volutional Neural Networks (CNNs) for rendering content
images, which is referred as Neural Style Transfer. Since
(Gatys, Ecker, and Bethge 2016) rendered images in an iter-
ative optimization way, which is of limited time efficiency,
Johnson et al. (2016) proposed to do stylization in a feed-
forward single-style-per-model way. Later, a variety of ap-
proaches have been proposed to further fasten the stylization
process for multi-style-per-model (Chen et al. 2017b), and
zero-shot style transfer (Huang and Belongie 2017). Some
researches focus on extending NST for photo realistic ren-
dering (Luan et al. 2017), doodle style transfer (Champan-
dard 2016), and stereoscopy (Chen et al. 2018).

Applying style transfer to video is more interesting yet
challenging. One difficulty is to maintain temporal consis-
tency for video style transfer. Ruder et al. (2016) first pro-
posed an online image optimization-based method. How-
ever, it takes several minutes to process a single frame even
with pre-computed optical flows. To speed up the process,
feed-forward models were latter proposed (Huang et al.
2017; Chen et al. 2017a; Gupta et al. 2017), where picture
pairs with optical flows are used to train the network with



a temporal consistency loss. However, their performance on
temporal consistency is not comparable with (Ruder, Doso-
vitskiy, and Brox 2016).

In this paper, we try to tackle the problem of consis-
tent video style transfer. Through theoretical analysis, we
find that both the traditional way of training with videos
and some recently proposed single-frame regularizations
have contradictions with the essence of temporal consis-
tency, which can lead to under-fitting and thus degrades net-
work performance. Based on mathematical modeling, we
derive a new compound regularization to better fit the na-
ture of temporal variation. Extensive experiments demon-
strate the effectiveness of the proposed regularization in bal-
ancing temporal stability and stylization effect. Another as-
pect to improve video style transfer is to introduce inter-
frame relationship, which helps long-term temporal consis-
tency. However, many models realize this by estimating op-
tical flows, which is of limited robustness and low efficiency.
We instead share global features. With feature distributions
aligned among the whole sequence, networks become more
robust to motions and illumination changes. One bottleneck
of stylization performance lies in feature migration. Exist-
ing modules either fail to fully reconstruct style patterns or
do not support end-to-end training. To address this problem,
we propose to adjust inner- and inter-channel feature distri-
butions through a dynamic filter.

Combing the above improvements, we present a video
style framework. Experimental results demonstrate the su-
periority of the propose framework. We also show that the
proposed compound regularization contributes to other vi-
sion tasks, thus can inspire researches in other domains. In
summary, our contributions are threefold:

• We propose a consistent video style transfer framework
with both temporally superior smoothness and visually
pleasing stylization effect.

• From theoretical analysis and modeling, we derive a novel
compound regularization which has superior effectiveness
in guiding neural networks and can help with other com-
puter vision video tasks.

• We develop a powerful filter to dynamically adjust inter-
channel feature distributions based on both current con-
tent and style. It improves color reconstruction and en-
ables end-to-end training.

Related Works
Image Style Transfer. Style transfer is the task of migrating
styles from an artistic image to a target image. Neural Style
Transfer (NST) (Gatys, Ecker, and Bethge 2016) first formu-
lated style as the feature-level correlation of pre-trained im-
age classification convolutional neural networks. Since then,
stylization has received more and more attention, even gives
birth to industrial products such as Prisma1 and DeepArt2.

A lot of research (Chen et al. 2017b) has been done to
accelerate NST. Recent researches mainly focus on render-
ing images to any style in one feed-forward pass. Following

1https://prisma-ai.com/
2https://deepart.io/

the idea that the essence of style transfer is to migrate fea-
ture distributions (Li et al. 2017a), most zero-shot methods
designed feature adaptation modules. AdaIN (Huang and
Belongie 2017) adjusted features through mean and vari-
ance. WCT (Li et al. 2017b) proposed multi-scale whiten-
ing and coloring transformation. Chen et al. (2016) mi-
grated features by patch swapping. Avatar-Net (Sheng et al.
2018) adopted a style-swap based style decorator. Recently,
Li et al. (2019) designed a linear transformation matrix.
SANet (Park and Lee 2019) proposed to replace the patch-
based mechanism with a linear module. Yao et al. (2019)
introduced self-attention mechanism.

Existing style transfer methods fail to well balance global
structures and style patterns. Moreover, most of them have
no consideration of temporal consistency, therefore result in
severe flickering artifacts on videos. In this paper, a novel
style transfer framework is proposed, which performs better
both spatially and temporally.

Video Style Transfer. Video stylization methods can be di-
vided into two categories: multiple frame and single frame.

Multiple-frame-based methods consider inter-frame cor-
relation in the inference phase. Based on NST, Ruder et
al. (2016) warped previous frames to the current time, which
forms a temporal loss to guide the optimization. Based on
Split and Match (Frigo et al. 2016), Frigo et al. (2019)
also used optical flows. For further acceleration, some feed-
forward networks are proposed (Gupta et al. 2017; Chen et
al. 2017a; Ruder, Dosovitskiy, and Brox 2018; Gao et al.
2018; Li et al. 2018). The effect of multiple-frame methods
highly depends on the correctness of estimated inter-frame
correlation, such as optical flows or RNNs. Therefore, ghost-
ing artifacts may occur when the estimation is inaccurate.
Moreover, this kind of methods often neglect the spatial dis-
tribution of style patterns, which may lead to weird results.

Single-frame-based models instead process each frame
independently. The ability to maintain temporal consistency
is usually obtained through training loss functions (Huang
et al. 2017) or stable modules (Li et al. 2019). However,
(Huang et al. 2017) requires an independent network for
each style, while the stylization effect of (Li et al. 2019) is
not satisfactory. We further explore the essence of single-
frame stability maintenance and introduce sequence-level
global feature sharing for better long-temporal consistency.

Some researches target at universal tasks. Lai et al. (2018)
designed a blind post-processing neural network which sup-
ports many kinds of vision tasks. However, for style transfer,
it may blur the strokes and bring out a color cast. Gabriel
et al. (2019) proposed to use single-frame regularization to
increase the temporal stability of CNNs. However, there is
no theoretical basis and no experimental comparison against
existing video models. Combining style transfer, we further
study the theoretical principle of temporal consistency; and
propose an effective solution and conduct extensive experi-
ments to demonstrate our standpoints.



Temporal Consistency via Training on
Single-Frame

In this section, we mathematically model temporal consis-
tency maintenance as mapping, from which a new regular-
ization is derived. For long-term temporal consistency, we
propose a strategy of sharing global features.

Compound Regularization
Without loss of generality, we may simplify frames as vec-
tors. Denote Xn ∈ RL as the n-th frame of the input video.
Assuming that color is constant, temporal consistency can
be defined as: there exists a small number δ > 0, such that
for all n, m with |n−m| < K, the value of Xn satisfies

||Xn −WXm→Xn(Xm)|| < δ, (1)

where K denotes the length of long-term temporal consis-
tency, andWXm→Xn

(Xm) denotes warpingXm toXn with
the corresponding optical flow. δ is the degree of consis-
tency. For a stable video, δ should be small enough so that
human eyes are not sensitive to the flickering artifacts.

Similarly, denote Yn = F(Xn) as the n-th frame of the
output video. Then output temporal consistency can be writ-
ten as: there exists a small number ε > 0, such that for all n,
m with |n−m| < K, the value of Yn satisfies

||Yn −WXm→Xn
(Ym)|| < ε. (2)

Our target of maintaining temporal consistency can be ex-
pressed as: when the input video is consistent, we hope that
the output video is also consistent. Evidently, Xn and Xm

are not limited to adjacent video frames. Therefore, we can
write our target as

Target 1. There exists small numbers ε, δ > 0, such that
for any X , X ′, and an operation of warping W with ||X ′ −
W (X)|| < δ, Y = F(X) and Y ′ = F(X ′) satisfy

||Y ′ −W (Y )|| < ε. (3)

Denote ∆ = X ′ −W (X), then we obtain

||Y ′ −W (Y )|| = ||F(X ′)−W (F(X))||
= ||F(W (X) + ∆)−W (F(X))||, (4)

which means that improving temporal consistency is equiv-
alent to minimizing

Lcomp = ||F(W (X) + ∆)−W (F(X))||. (5)

Intuitively, Lcomp is a compound of two transformations:
∆ represents local jitter or noise, whileW (·) represents mo-
tions. Later we will show thatLcomp can be an effective tem-
poral consistency regularization.

Sequence-Level Global Feature Sharing
Single frame information is obviously not sufficient for sta-
ble video processing. A common way to introduce inter-
frame correlation is warping frames with optical flows in the
inference phase (Ruder, Dosovitskiy, and Brox 2016). How-
ever, these methods highly rely on the accuracy of optical
flows and fail to handle long-term temporal consistency.
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Figure 2: Ablation study of global feature sharing. With this
strategy, stylized patterns of the snow mountain maintain the
same appearance on frame 14 and 17.

We notice that many style transfer methods use global dis-
tributions to characterize styles, such as feature-level mean
and variance in AdaIN (Huang and Belongie 2017). How-
ever, when there are extreme variations, e.g. a new object
enters or the illumination changes, global distributions will
be changed. This may cause the same object to have differ-
ent styles on different frames. Driven by this observation, we
propose to share global features across the whole sequence.
Specifically, we first extract 1/8 frames, then calculate the
sequence-level average of the global features. Finally in the
inference phase, only the average values are used.

As shown in Fig. 2, without sequence-level global feature
sharing, stylized patterns are of different appearances on dif-
ferent frames, which creates flicker artifacts.

Consistent Video Style Transfer
Combining the above techniques for temporal consistency,
we propose a novel video style transfer framework.

Dynamic Inter-Channel Filter
In order to improve stylization effects and enable end-to-end
training, we design a new module for image style transfer.

As Li et al. (Li et al. 2017a) pointed out, the essence of
style transfer is to migrate feature distributions. Following
this idea, AdaIN (Huang and Belongie 2017) proposed to
directly align the feature-level channel-wise mean and vari-
ance. However, although for every single channel the dis-
tributions are well migrated, the correlation between differ-
ent channels may be still inconsistent with that of the target
style. This can lead to unsatisfactory results, such as fusing
colors as shown in Fig. 4(b).

Avatar-Net (Sheng et al. 2018) tried to address this prob-
lem by matching patches. However, style patterns and se-
mantic structures are not well correlated, which may lead
to messy textures and distorted contours. Moreover, it does
not support end-to-end training. Yao et al. (2019) improved
Avatar-Net with self-attention mechanisms, but the results
are still unsatisfactory as shown in Fig. 5(b). SANet (Park
and Lee 2019) applied a linear module, but it may distort
textures as shown in Fig. 5(c).

To solve this issue, we design a new module for inter-
channel feature adjustment. As shown in Fig. 3, both input
and style features are fed into the Filter Predictor module to
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Figure 3: Left: the proposed decorator block for inter-channel feature adjustment. Both target style features and input content
features are fed into a shallow sub-network Filter Predictor to predict filters. Residual learning and dimensionality reduction
are used to improve the efficiency. Right: The overall architecture of the proposed encoder-decoder style transfer network.

(a) Input (b) AdaIN (c) S Filter (d) C+S Filter

Figure 4: Ablation study of different decorator modules. S
denotes being dynamic to only style features. C+S denotes
being dynamic to both content and style features.

dynamically predict a linear combination of different chan-
nels, which is later applied to the input feature by a 1×1 con-
volution. Global average pooling modules guarantee that the
network is robust to any resolution. Notice that if we directly
predict a 512-channel filter, which has 512 × 512 = 218

parameters, the computational complexity will be too high.
Therefore, we reduce the dimension to 32 and use residual
learning to prevent information loss. As shown in Fig. 4,
with Filter Predictor, the textures are clearer and the colors
match the target style better.

The proposed Filter Predictor is dynamic to both content
and style. If it is only dynamic to style, which is similar to
Meta Network (Shen, Yan, and Zeng 2018), the stylization
result will be unsatisfactory as shown in Fig. 4(c).

Network Architecture and Training

The architecture of the propose framework is shown in
Fig. 3. We follow the hourglass encoder-decoder architec-
ture of Avatar-Net (Sheng et al. 2018). In our model, there
are two kinds of global features: 1) the feature-level mean
and variance in instance normalizations or AdaINs, 2) fil-
ters predicted by Filter Predictor. They are shared among
the whole sequence in the inference phase.

(a) Input (b) Yao et al. (c) SANet (d) Ours

Figure 5: Comparison with other style transfer modules.

The training loss L consists of five functions:
L = λtLt + λsLs + λcLc + λrLr + λtvLtv, (6)

whereLt denotes the proposed compound temporal loss. For
style lossLs and content lossLc, we use a pre-trained VGG-
19 (Simonyan and Zisserman 2014):

Ls(S, Y ) =
∑

(||Mean(Φl(S))−Mean(Φl(Y ))||2+

||Var(Φl(S))− Var(Φl(Y ))||2), (7)

Lc(C, Y ) =
∑
||Φl(C)− Φl(Y )||2, (8)

where Φl denotes the feature map of VGG-19 at layer l, S
denotes style images, and C denotes content images. For
Lc, we use ReLU4 1. For Ls, we use ReLU1 1, ReLU2 1,
ReLU3 1, and ReLU4 1. Ltv denotes total variation loss. To
avoid being affected by the color of content images, we de-
saturate content images in both training and inference phase,
and introduce a color reconstruction loss:

Lr = ||F(Cgray, Ccolor)− Ccolor||, (9)
where F(Cgray, Ccolor) denotes colorizing gray images us-
ing the style of corresponding colorful images.

Experimental Results
Implementation Details
In compound regularization, W (·) is implemented by warp-
ing with a random optical flow, while ∆ is a random noise



Method Temporal Loss / Interval i

i = 1 i = 2 i = 4 i = 8 i = 16

WCT 0.116 0.119 0.120 0.116 0.112
AdaIN 0.082 0.085 0.087 0.086 0.085
WCT + Blind 0.070 0.073 0.077 0.080 0.083
Avatar-Net 0.056 0.063 0.067 0.070 0.073
Linear 0.040 0.046 0.049 0.051 0.053
Ruder et al. 0.038 0.047 0.059 0.073 0.086

Baseline 0.059 0.062 0.063 0.063 0.063
Baseline + Global 0.050 0.054 0.055 0.055 0.056
Baseline + Blind 0.048 0.050 0.052 0.056 0.063
Baseline + Lt 0.041 0.045 0.048 0.049 0.050
Ours (Baseline + Lt + Global) 0.036 0.041 0.044 0.045 0.047

Figure 6: Quantitative evaluation of temporal consistency. For the proposed method, Baseline denotes the proposed image style
transfer network, Blind denotes using Blind (Lai et al. 2018) for post-processing, Lt denotes training with temporal loss, and
Global denotes using global feature sharing. Our models yields the lowest temporal loss for all temporal length.
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Figure 7: Comparison results on long-term temporal consis-
tency: (a) Ruder et al., (b) Baseline + Blind, (c) Ours. For (a)
and (b), the bamboos are stylized differently on frame 1 and
50. Our model instead well maintains temporal consistency
even with an interval of 49 frames.

with ∆ ∼ N (0, σ2I), σ2 ∼ U(0.01, 0.02). The network is
first pre-trained without Lt for two epochs, then fine-tuned
with Lt for 5k iterations. More details and settings can be
found in the supplementary materials.

Quantitative and Qualitative Comparisons
Temporal Consistency. The proposed method is compared
with five state-of-the-art style transfer frameworks and one
post-processing model for universal tasks. We evaluate both
short and long-term temporal consistency:
Ltemporal = ||O ◦ (WXn→Xn−i(Yn)− Yn−i))||, (10)

where i ∈ {1, 2, 4, 8, 16} denotes frame interval, and O de-
notes occlusion mask. We use all the sequences of MPI Sin-
tel dataset (Butler et al. 2012). For i = 1, MPI Sintel pro-
vides ground truth optical flows. For i > 1, we use PWC-
Net (Sun et al. 2018) to estimate optical flows. Since optical
flows might be inaccurate, we modify occlusion mask as
O′ = O ∪ {||WXn→Xn−i

(Xn)−Xn−i)|| > 10}. (11)

This also helps us exclude areas where the illumination
changes. For styles, we collect 20 artworks of various types.

Quantitative results are shown in Fig. 6. The model pro-
posed by Ruder et al. (2016) maintains good consistency for
short temporal length, however, with the increase of i, the
performance degrades heavily. This is because it relies too
much on the inter-frame relationship and can be easily af-
fected by inaccurate optical flows. Lai et al. designed a blind
post-processing model Blind (Lai et al. 2018). We show its
result with WCT (Li et al. 2017b) (which Lai et al.used in
the original paper) and the proposed method. Blind is also
not robust to temporal length, and causes severe color bias
as shown in Fig. 7(b).

For the proposed method, both global feature sharing and
temporal regularization improve performance. Their combi-
nation finally yields the best result for all temporal length.

Stylization Effect. Image style transfer results are shown
in Fig. 8. NST (Gatys, Ecker, and Bethge 2016) fails to
balance colors. AdaIN (Huang and Belongie 2017) and
WCT (Li et al. 2017b) distort content structures heavily.
Avatar-Net (Sheng et al. 2018) well generates the style pat-
terns, however, the style patterns have less correlation with
the semantic structure. Linear (Li et al. 2019) introduces
weird colors such as pink in the second row. Our models
better balance style migration and semantic reconstruction.
Compared with the baseline, the final version of our model
slightly blurs the strokes, which is due to the temporal regu-
larization. However, the result is still visually pleasing.

Video style transfer results are shown in Fig. 9. Both
AdaIN, Linear, and the model proposed by Ruder et al. fail
to reconstruct the pure blue color of the target style. WCT
and Avatar-Net well synthesize the water painting stroke.
However, they have high temporal errors. Compared with
other methods, the proposed baseline better migrates colors
and preserves semantic details. Using temporal regulariza-
tion and global feature sharing, the temporal stability im-
proves without hurting stylization effect.



Input NST AdaIN WCT Avatar-Net Linear Baseline Ours

Figure 8: Comparison with state-of-the-art methods on image style transfer.

Input WCT WCT+Blind AdaIN Avatar-Net

Linear Ruder et al. Baseline Ours

Figure 9: Comparison on video style transfer. The bottom of each row shows the temporal error heat map. Please refer to the
supplementary materials for a video demonstration.

Effectiveness of Compound Regularization
Discussion. Most existing models are trained on real videos
with temporal loss (Eq. (2)). However, due to, e.g., the inac-
curacy of optical flows, or color/illumination variations, the
training data usually doesn’t satisfy Eq. (1). This may result
in under-fitting and degrade the performance.

To avoid the trouble of collecting video data and estimat-
ing optical flows, some unsupervised single-frame regular-
izations are proposed. The noise stability (Zheng et al. 2016)
can be rewritten with our variables as

Lnoise = ||F(X + ∆)−F(X)||. (12)
The transform invariance (Eilertsen, Mantiuk, and Unger

2019) can be rewritten as
Lmotion =||F(W (X))−W (F(X))||. (13)

Compared with Lcomp, both Lnoise and Lmotion only
contain one kind of transformation. Therefore, they cannot
guide the network to optimize in the most correct direction.
To demonstrate this, we benchmark the above training tech-
niques with our baseline image style transfer network.
Experimental Settings. For training on videos, we follow
the loss function and training strategy of (Huang et al. 2017),
the training data of Blind (Lai et al. 2018), and use PWC-
Net (Sun et al. 2018) to estimate optical flows. Lnoise and
Lmotion are implemented in the same way with Lcomp. To
reduce the impact of randomness and inappropriate weights,
we conduct 5 individual trainings and select 8 sets of param-
eters. Temporal smoothness is also measured with temporal
loss (Eq. (10)). Stylization effect is evaluated by style loss
(Eq. (7)) and content loss (Eq. (8)).



Figure 10: Performance of temporal consistency and stylization. Each data point represents an individual experiment. The
strength of regularization is represented by different colors. A deeper color indicates a higher temporal loss weight. For the
convenience of comparison, we additionally draw some light gray dotted lines.

Input Ls = 0.94 Ls = 1.36 Ls = 1.74

Figure 11: Results of models with different style loss. We
choose three models with similar temporal loss (0.0478 ∼
0.0481) but various style loss Ls. Models with higher style
loss fail to well reconstruct the wooden texture.

W/O Frame1 Frame2 W/ Frame1 Frame2

Figure 12: With the proposed temporal regularization, the
temporal consistency of CycleGAN improves.

Results. As illustrated in Fig. 10, even without temporal
loss, there is still a trade-off between temporal stability and
stylization: the decrease of temporal loss can increase style
loss, and content loss vice versa. This is because content im-
ages or say input frames, are themselves temporally consis-
tent. Stylization, however, introduces variations, making it
harder to preserve temporal smoothness.
Lnoise decreases temporal loss. Moreover, it changes the

trade-off rate between style and temporal stability, which
means the same amount of style loss increase can bring more
temporal loss reduction. This indicates that regularizations
can lead to better networks characteristics. However, there
is no strong correlation between temporal loss weight and
style loss. Moreover, the increase of regularization strength

can hurt the effect of content reconstruction.
The other three strategies have better trade-off rates for

both style-temporal and content-temporal. With the increase
of regularization strength, temporal smoothness improves
steadily. Among all strategies, Lcomp performs the best
for style loss. For content loss, although Lcomp performs
slightly worse than Lmotion when the temporal loss weight
is low, on higher strength, Lcomp yields the best result. Di-
rectly training on videos performs worse than Lcomp and
Lmotion. This may due to that the color/illumination of real
videos is not strictly constant, and forcing networks to uni-
formly stylize different colors may cause conflict.

Ablation Study. As shown in Fig. 11, the increase of style
loss can result in weaker strokes and more monotonous col-
ors. To alleviate this problem, we set λt = 150 so that with
Ls = 1.067207, the stylization effect is still pleasing.

Application
Real-Time Multiple Style Integration. Our model encodes
styles into convex spaces, therefore we can integrate fea-
tures to generate new styles. Moreover, benefiting from our
single-frame property, styles can vary from frame to frame
as shown in Fig. 1, providing users with high flexibility.

Improving Other Tasks. The proposed temporal regular-
ization can be easily applied to other vision tasks. For ex-
ample, it can be used on image-to-image translation without
breaking the balance of adversarial training. Fig. 12 shows
the result with CycleGAN (Zhu et al. 2017) on horse2zebra.

Conclusion
In this paper, we propose a novel video style transfer frame-
work. To improve single-frame temporal stability, we first
derive a new regularization term, which outperforms exist-
ing training strategies and can support various tasks. Then



we design a sequence-level feature sharing strategy for long-
term temporal consistency, and a dynamic inter-channel fil-
ter to improve the effect of stylization. Experimental results
demonstrate the superiority of the proposed framework.
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